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Social learning is critical for engaging in complex interactions with other individuals. Learning from positive social exchanges, such as
acceptance frompeers, may be similar to basic reinforcement learning.We formally test this hypothesis by developing a novel paradigm
that is based onwork in nonhumanprimates andhuman imaging studies of reinforcement learning. The probability of receiving positive
social reinforcement from three distinct peers was parametrically manipulated while brain activity was recorded in healthy adults using
event-related functionalmagnetic resonance imaging.Over the course of the experiment, participants respondedmorequickly to faces of
peers who provided more frequent positive social reinforcement, and rated them as more likeable. Modeling trial-by-trial learning
showed ventral striatum and orbital frontal cortex activity correlated positively with forming expectations about receiving social rein-
forcement. Rostral anterior cingulate cortex activity tracked positively withmodulations of expected value of the cues (peers). Together,
the findings across three levels of analysis—social preferences, response latencies, andmodeling neural responses—are consistent with
reinforcement learning theory and nonhuman primate electrophysiological studies of reward. This work highlights the fundamental
influence of acceptance by one’s peers in altering subsequent behavior.

Introduction
Successfully navigating our social environment depends on
learning from positive and negative encounters with others and
shaping future behavior toward those individuals. Psychologists
have proposed that positive social exchanges are fundamentally
rewarding for humans (Bandura and Walters, 1963; Baumeister
and Leary, 1995; Steinberg, 2008), suggesting that learning from
social interactions may draw on basic reinforcement learning
mechanisms. The present study was designed to test this hypoth-
esis by building on reinforcement learning studies in nonhuman
primates and human imaging studies (Schultz et al., 1997; Fior-
illo et al., 2003; McClure et al., 2003; D’Ardenne et al., 2008).

Reinforcement learning from primary (e.g., food) and sec-
ondary (e.g., money) reinforcers has been shown to engage spe-
cific neural circuitry. In its simplest form, it is explained by the
classic Rescorla–Wagner model (Rescorla and Wagner, 1972).
According to this model, learning to associate arbitrary cues with

positive outcomes results in expectations of future positive out-
comes in the presence of these cues. If there are discrepancies
between the expected outcome to the cue and the actual outcome,
a prediction error signal is generated. Nonhuman primate and
human imaging studies have implicated the ventral striatum and
orbital frontal cortex (OFC) in prediction error signaling
(Schultz et al., 1997; Berns et al., 2001; Fiorillo et al., 2003; Mc-
Clure et al., 2003). Studies have shown that as cues become reli-
ably associated with receipt of a reward, manual responses to
these cues quicken over time (O’Doherty et al., 2006; Spicer et al.,
2007), while others demonstrate changes in choice behaviors
based on reinforcement manipulations (Daw et al., 2006; Li and
Daw, 2011). The learned association generates a neural signal to
the cue that previously was associated with the reward itself
(Schultz et al., 1997; O’Doherty et al., 2006). The current study



greatest probability of providing social ac-
ceptance to the participant. We applied a
simple Rescorla–Wagner rule in behav-
ioral and functional imaging analyses to
target the neural bases of these behavioral
changes, hypothesizing that the ventral
striatum and OFC would code predic-
tion error signals (Schultz et al., 1997;
O’Doherty, 2007). Thus, the current study
elucidates neurobiological mechanisms
for key learning processes during social
exchanges that shape behavior through
positive interactions.

Materials and Methods
Participants. Forty-six adults (aged 18 –28
years; 22 females) participated in the experiment.
Thirty-six completed the task during functional
magnetic resonance imaging (fMRI) (aged
18–28 years; all right-handed; 19 females). Three
individuals in the fMRI group were excluded due
to insufficient number of correct trials in any
condition (n� 2; 1 male) or noncompliance with
the task (n � 1, male). Participants reported no
history of neurological and/or psychiatric disor-
ders in a standard screening or on the Structured
Clinical Interview for DSM-IV Axis I Disorders (SCID) (First et al., 2007)
and imaging participants reported no contraindications for an MRI. Two
participants did not complete the SCID due to time constraints. All par-
ticipants provided written consent approved by the Institutional Review
Board at Weill Cornell Medical College and were debriefed and compen-
sated following their participation.

Experiment cover story. The experiment was conducted during two
separate sessions. The first session introduced the cover story, leading
participants to believe they would receive actual social feedback during a
task that would be completed on the second visit. Participants were
shown up to five photographs of gender- and ethnicity-matched peers.
They then selected three with whom they would like to interact, and rated
the three peers for how likeable and attractive they looked on a scale from
1 (not very) to 10 (very). Participants also completed a personal survey
where they listed information about themselves (birthday; hometown;
and favorite music, TV shows, books, quotes, and activities). Participants
were told that each of the three selected peers would see their survey over the
next few days as well as the surveys of two other supposed participants. These
three peers would write notes indicating a positive interest in the partici-
pant’s survey or in one of the other two surveys. Participants were told that
each of these individuals could write a small number of notes, emphasizing
their limited number and enhancing the positive value of receiving a note.
Participants were then scheduled for a second session.

At the second session, participants were told that the experimenters
had compiled the notes from the three selected peers. During the exper-
iment, participants would be shown how often each of the peers decided
to write notes to them (positive social reinforcement) or to one of the
other supposed participants (no positive social reinforcement). Al-
though it is possible that participants experienced the no positive social
reinforcement trials as mildly rejecting, we have chosen not to adopt this
interpretation because we do not have conclusive data supporting this
possibility. Rather, these operational definitions were selected for consis-
tency with studies of basic reward learning. At the beginning of the sec-
ond session, participants were also reminded that receiving a note
symbolized that the peer was interested in something written in their
personal survey.

Unbeknownst to the participants, peer interaction (i.e., delivery of
notes) was experimentally manipulated such that each of the three peers
was associated with a distinct probability of social reinforcement (Fig.
1A) with Rare interaction defined by positive social reinforcement on
33% of the trials and no positive social reinforcement on 66% of the

trials; Frequent interaction defined by positive social reinforcement on
66% of the trials and no positive social reinforcement on 33% of the trials;
and Continuous interaction defined by positive social reinforcement on all
trials (100%). The probability of reinforcement associated with each of the
face stimuli was counterbalanced across participants to equate for low-level
stimulus features across conditions.

Task parameters. At the start of each trial (Fig. 1B), a picture of one of
the three peers was presented for two seconds (Cue). During the two
seconds, the stimulus would wink for 500 ms in either the left or right eye,
indicating that a note was ready to be passed. Participants signaled that
they were ready to receive the note by pressing one of two buttons indi-
cating whether the wink was in the left or the right eye. This behavioral
component was included to ensure attention and to collect reaction time
data as an index of learning about the reinforcement contingencies for
each of the three peers across the experiment. After a jittered interstimu-
lus interval of a picture of a folded note (2, 4, 6, or 8 s), three hands
appeared at the bottom of the screen with one hand holding a note for 2 s
(Feedback). Participants had been instructed that if the middle hand held
the note, this signified that the participant had received a note from that
peer (positive social reinforcement). If the note appeared in one of the
hands to the left or right of the middle hand, this signified that the note
was given to someone else (no positive social reinforcement). If the par-
ticipant pressed incorrectly or did not respond during the cue, no feed-
back was given. A jittered intertrial interval (2, 4, 6, or 8 s) followed in
which participants rested while viewing a fixation crosshair. Participants
viewed 18 trials per run in a pseudorandomized order with six trials per
condition (Rare, Frequent, Continuous) for six runs, for a total of 108
trials, 36 trials per condition. To enhance the believability of the cover
story and keep participants engaged, one of the notes was shown between
each run; these notes were generated by the experimenters and always
indicated positive interest in the participant’s personal survey (e.g., “I
love playing soccer too, and I am part of a weekend league”, “Where did
you go when you visited Hawaii?”, “I also have a golden retriever”).

To further index learning with the reaction time data at the end of the
experiment, after the six experimental runs, participants completed a
reversal run (18 trials) during which reaction times were recorded. Con-
tingencies were reversed for the Rare and Continuous conditions such
that the Rare peer now provided 100% reinforcement to the participant
and the Continuous peer now provided 33% reinforcement to the par-
ticipant. The Frequent peer’s probability (66%) did not change.

The task was presented using E-Prime software, and the participants
who completed the task during fMRI viewed images on an overhead

Figure 1. Task parameters. A, Three peers chosen by the participant were associated with distinct probabilities of positive
reinforcement. B, Schematic of one trial within a run. The face of one peer (Cue) was displayed for 2 s, during which the face
stimulus winked (500 ms) and participants pressed one of two buttons indicating in which eye the wink occurred, followed by a
variable interstimulus interval (ISI), followed by the note outcome (Feedback). In this example, the participant received the note
(positive social reinforcement) because it appeared in the middle hand. If the note appeared in one of the hands to the left or to the
right of the middle hand, the participant did not receive the note (no positive social reinforcement). A variable intertrial interval
(ITI) followed.
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liquid crystal display panel with the Integrated Functional Imaging
System-Stand Alone (IFIS-SA; fMRI Devices). E-Prime software, inte-
grated with IFIS-SA, recorded button responses and reaction times using
the Fiber Optic Button Response System (Psychology Software Tools).

At the end of the experiment, participants completed posttest ratings
of attractiveness and likeability for each peer on the same scale used at the
beginning of the experiment. To assess whether participants held explicit
knowledge of the social reinforcement contingencies associated with
each peer, they were asked whether any of the three peers provided pos-
itive reinforcement more often than any others. If the participant said
yes, they were asked to describe what pattern they noticed, and descrip-
tions were scored based on whether the participant accurately stated
which peer provided the most, intermediate, and least positive social
feedback. Three of the 43 participants correctly ranked the three peers in
this way and were thus considered explicitly aware of the social reinforce-
ment contingencies. Participants were then debriefed regarding the cover
story and the rationale of the experiment.

Image acquisition. Participants were scanned with a Signa HDx 3.0T
MRI scanner (General Electric Medical Systems) with a quadrature head
coil. A high-resolution, 3D magnetization prepared rapid acquisition
gradient echo anatomical scan (MPRAGE) was acquired (256 � 256
in-plane resolution, FOV � 240 mm; 124 1.5 mm sagittal slices). Func-
tional scans were acquired with a spiral in and out sequence (TR � 2000
ms, TE � 30 ms, flip angle � 90°) (Glover and Thomason, 2004).
Twenty-nine 5-mm-thick contiguous coronal slices were acquired per
TR, for a total of 129 TRs per functional run with a resolution of 3.125 �
3.125 mm (64 � 64 matrix, FOV � 200 mm) covering the entire brain
except for the posterior portion of the occipital lobe.

Behavioral analysis. Change in attractiveness and likeability of the
peers before and after the task was tested with a 3 (probability: Rare,
Frequent, Continuous) � 2 (time: before task, after task) repeated-
measures ANOVA using PASW Statistics 18 software (SPSS). Attractive-
ness and likeability ratings for three of the 43 participants were lost due to
technical error.

Reaction times were analyzed in response to the cue after the wink
occurred. Reaction times were z-score transformed for each individual
after removing outliers (defined as reaction times 3 SDs above or below
the individual’s mean reaction time). Changes in reaction times and
accuracy for the three conditions during the early and late trials were each
tested with a 3 (probability: Rare, Frequent, Continuous) � 2 [time: first
half of trials (early), second half of trials (late)] repeated-measures
ANOVA.

To test for reaction time modulation as a function of contingency
reversal, we compared reaction times from the sixth run of the experi-
ment to the reversal run with a 2 (probability: Rare, Continuous) � 2
(time: sixth run, reversal run) repeated-measures ANOVA.

Prior research has demonstrated that not receiving reinforcement on a
given trial modulates behavioral responses on the next trial (Liu et al.,
2007). To determine whether reinforcement outcome influenced re-
sponse latencies on the subsequent trial, we compared reaction times
from trials when the participant had received positive social reinforce-
ment on the preceding trial to trials when they had not received positive
reinforcement using a paired samples t test.

Reinforcement learning model. We used a simple reinforcement learn-
ing algorithm (Rescorla–Wagner) to model the trial-by-trial variance in
participants’ reaction times (Rescorla and Wagner, 1972). The Rescorla–
Wagner rule probes learning through a prediction error (PE) signal �,
which is the difference between the experienced outcome (R; positive
social feedback or no positive social feedback) and expected outcome (V)
for each trial. PE takes the form of � � R � V and can be used to
subsequently update expected outcome weighted by a fixed learning rate �:
V

t � 1
� Vt � ��t for given trial t. Reaction time has been shown in

previous studies to be a reliable indicator of learning contingencies and
speeding or slowing in reaction times has been associated with condition-
ing as predicted by reinforcement learning models (Seymour et al., 2004;
Bray and O’Doherty, 2007). We thus fitted the Rescorla–Wagner model
to participants’ trial-by-trial z-score transformed reaction times using a
linear regression model to derive the best-fitting model parameters (�
and V0). We tested the rate of learning for each subject based on his or her

individual reaction time history, which yielded an average learning rate
(�) of 0.15 across participants, suggesting learning effects on reaction
time measures (one-sample t test of learning rate vs null hypothesis of 0;
p � 0.001). The average learning rate of participants who completed the
behavioral version of the experiment was comparable to the imaging
sample (p � 0.3), suggesting consistency in our model.

Imaging analysis. The fMRI data analyses were performed with Anal-
ysis of Functional Neuroimages (AFNI) software (Cox, 1996). Func-
tional data were slice-time corrected, realigned within and across runs to
correct for head movement, coregistered with the high-resolution ana-
tomical scan, scaled to percentage signal change units, and smoothed
with a 6 mm full-width at half maximum Gaussian kernel. Images with
movement �2 mm along the x, y, or z planes were excluded from the
analysis. Functional data were transformed into standard Talairach co-
ordinate space (Talairach and Tournoux, 1988) by using the warping
parameters obtained from the Talairach transformation of the high-
resolution anatomical scan. Talairach-transformed functional data were
resampled to a resolution of 3 � 3 � 3 mm.

For imaging analysis, we generated a linear reinforcement learning
model with linear regression using reaction times of all participants to
obtain a single set of signed model parameters (� and V0) that best fit
participants’ behavior (r � 0.19, p � 0.001). This approach has been
suggested to be less susceptible to extreme parameter value estimation for
individual participants and tends to more stable (Daw et al., 2006; Bray
and O’Doherty, 2007; Li et al., 2011). The learning rate (� � 0.07) de-
fined from modeling of the behavioral data was used to generate the PE
and expected outcome values that were included as parametric regressors
with signed numbers in individual-subject general linear models.

A general linear model analysis was performed to estimate neural re-
sponses to stimuli as a function of reinforcement learning. Each partici-
pant’s GLM contained five task regressors: (1) cue onset times, defined as
the time points at which peer faces were presented; (2) a parametric
regressor paired with cue timings containing expected value estimates for
each trial (Vt); (3) feedback onset times, containing values corresponding
to the time points at which the note feedback was presented; (4) a para-
metric regressor paired with feedback onset time representing prediction
error values (�t); and (5) incorrect trial onset times. Task regressors were
convolved with a gamma-variate hemodynamic response function. Re-
gressors of noninterest included motion parameters and linear and qua-
dratic trends for each run. Separate random effects group analyses were
conducted on individual participant beta estimates for the parametric
regressor representing prediction error values (�t) and individual partic-
ipant beta estimates for the parametric regressor representing expected
values to the cues (Vt).

To test for basic effects of prediction error during the feedback presen-
tation, a within-subjects voxelwise one-sample t test was performed to
identify regions demonstrating activity that positively correlated with
prediction error learning signals. To identify neural responses to ex-
pected values during the cue presentation of the trials, a within-subjects
voxelwise one-sample t test was performed to identify regions showing
activity that positively correlated with expected values to the cues. Results
of all whole-brain analyses were considered significant by exceeding a p



probability and time (pre-interaction,
post-interaction) on likeability ratings
(F(2,78) � 5.48, p � 0.01; Fig. 2A). Post hoc
analyses indicated that post-task ratings
decreased linearly with decreasing inter-
action probability, such that peers who
interacted less with the participant were
rated as less likeable (linear term: F(1,39) �
7.17, p � 0.02). Whereas pre-task likeabil-
ity ratings were equivalent for all three
peers (ps � 0.48), after the task the Fre-
quent (t(39) � �2.26, p � 0.03) and Con-
tinuous (t(39) � �2.68, p � 0.02) peers
were rated as more likeable than the rarely
reinforcing peer, though there was not a significant difference in
likeability ratings after the task between the Frequent and Con-
tinuous peers (t(39) � �0.69, p � 0.49). Attractiveness ratings
were not significantly modulated by task conditions (main effects
of reinforcement probability, time, and interactions: ps � 0.09).

Accuracy
Participants responded correctly to 95.63% of trials (SD �
3.54%). Response accuracy was not significantly modulated by
the task conditions (main effects of reinforcement probability,
time, and interactions: ps � 0.29).

Reaction time
Response latencies to the cue varied as participants learned the
reinforcement contingency outcomes associated with each peer,
as indicated by a significant interaction between probability of
reinforcement and time (F(2,84) � 3.98, p � 0.03; Fig. 2B). Post
hoc t tests showed that, whereas there was no difference in reac-
tion times in the early trials (all ps � 0.41), individuals were faster
during the late trials for the Frequent reinforcement condition
(t(42) � 2.49, p � 0.02), compared with the Rare reinforcement
condition. There was a trend for responses to be faster in the
Continuous reinforcement condition (t(42) � 2.01, p � 0.06)
than in the Rare reinforcement condition. Overall, participants
were faster during the late versus early trials (F(1,42) � 15.21, p �
0.01) and there was no main effect of probability of social rein-
forcement when collapsing across time (F(2,84) � 1.43, p � 0.25).

To further test for the effects of learning, we compared reac-
tion times for Rare and Continuous reinforcement before and
after reinforcement contingencies were reversed at the end of the
experiment. Evidence that participants had implicitly learned the
contingencies was further supported by the interaction between
time (sixth run vs reversal) and reinforcement probability (rarely
reinforcing vs continuously reinforcing) on reaction times
(F(1,42) � 10.15, p � 0.01; Fig. 2C). Post hoc tests showed a signif-
icant reaction time speeding when the Rare condition switched to
delivering Continuous reinforcement (t(42) � 3.13, p � 0.01).
There were no main effects of reinforcement probability (F(1,42) �
2.77, p � 0.1) or time (F(1,42) � 1.35, p � 0.25). There was also no
difference in the Frequent condition (unchanged during reversal)
reaction times between the last run and the reversal run (t(42) �
�1.48, p � 0.15).

Additionally, we examined how reaction times (RT) changed
based on feedback from the preceding trial as another index of
how the reinforcement contingencies altered behavior. We found
that participants were faster on the subsequent trial after not
receiving positive reinforcement (mean z-score RT: �0.01, SD:
0.13) versus when they had received positive reinforcement
(mean z-score RT: 0.07, SD: 0.1; t(42) � 2.86, p � 0.01).

Imaging
Prediction errors
As indexed by the prediction error parametric regressor, predic-
tion error signals (�t) were positively associated with activity in
the rostral anterior cingulate cortex, ventral striatum, anterior
insula, and OFC (Table 1; Fig. 3). The parametric values in the
general linear model encompassed positive and negative predic-
tion errors, demonstrating that the BOLD fluctuations in these
regions tracked learning signals reflecting reinforcement expec-
tancies. Together, these findings delineate an orbital frontostria-
tal circuit showing significantly greater activity associated with
the unexpected outcomes of either receiving or not receiving
positive social reinforcement.

Expected cue values
We also examined regions of the brain that positively correlated with
learning to distinguish the faces of the peers based on their differen-
tial rates of positive social reinforcement (learned cue value). Specif-
ically, group analysis of the cue phase of trials that tracked positively
with modulations of expected value (Vt) identified greater activity in
the rostral anterior cingulate cortex with larger expected value (Fig.
4). No other regions survived whole-brain correction. No regions
within the frontostriatal circuitry of interest demonstrated negative
correlations with expected value (i.e., brain regions sensitive to lower
expected values) at corrected thresholding.

Discussion
Repeated social exchanges shape our behavior toward others. In
this experiment, we examined how different probabilities of pos-
itive interaction from distinct peers rapidly influence social learn-
ing. Within a reinforcement learning framework, we developed a
novel social paradigm and demonstrated that the neural systems
engaged while forming social expectations are similar to those
involved in basic reward learning. This overlap in neural circuitry
and function is consistent with prediction error-related learning
and with our hypothesis that positive social interactions can serve
as secondary reinforcers, taking on the attributes of primary re-
wards essential to survival (e.g., food).

Over the course of the experiment, participants learned to
differentiate each of the cues (peers) by their distinct reinforce-

Figure 2. Behavioral responses to cues. A, Likeability ratings for the three peers before engaging in the task (pre-interaction)
and after the task (post-interaction). B, Reaction times to the wink for the three peers, broken down by early and late trials of the
experiment. C, Reaction times during the final (sixth) run of the experiment and during the run when the contingencies were
reversed for the Rare and Continuous conditions.

Table 1. Brain regions reflecting positive correlations with prediction errors

Region x y z Number of voxels t

R rostral ACC 2 29 11 316 4.23
R anterior insula 32 11 �10 56 3.55
L ventral striatum �4 5 5 53 3.89
L orbital frontal cortex� �32 26 �7 12 3.47

Coordinates represent activation clusters exceeding p � 0.05, whole-brain corrected, thresholding, and are listed in
Talairach and Tournoux coordinate space. R, Right; L, left; �, small volume corrected.
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ment outcomes. Specifically, one peer always provided positive
social reinforcement, another one frequently provided positive
social reinforcement, and the third rarely provided positive social
reinforcement. Ratings of likeability changed from the beginning
to the end of the experiment, with less reinforcing peers becom-
ing less likeable, and more reinforcing peers yielding higher rat-
ings of likeability by the end of the task. By asking participants to
make a simple button response during the cue presentation, we
tested whether speeding of response latencies (action tendencies)
indexed learned associations between a given peer and their
probability of providing positive social reinforcement. As ex-
pected due to the simplicity of the task, accuracy was at ceiling
and there were no statistical differences in accuracy for the three
peers.

In the current study, we observed faster responses to peers
who provided positive social reinforcement more often, similar
to studies where participants responded more quickly to cues that
reliably predicted receiving a primary or secondary reward
(O’Doherty et al., 2006; Spicer et al., 2007). Measuring differ-
ences in reaction times to cues to index learning differs from
reinforcement studies that use modulated choice behavior as an
indicator of learning (Tanaka et al., 2004; Daw and Doya, 2006;
Schönberg et al., 2007). Choice tasks index changes in explicit
preferences or a participant’s strategy in maximizing reinforce-
ment, while in the current study, changes in responses are
thought to index differences in approach behaviors that are based
on learning from a prior history of social feedback. In addition,
participants showed faster reaction times after trials that did not

provide positive social reinforcement.
This finding is similar to studies that
demonstrate improved performance on
a trial that follows receiving punishment
(Hester et al., 2010) or choosing to make
a bet more often after losing money than
after winning money (Liu et al., 2007),
though the present study did not assess
strategic behavior directly. Together,
the behavioral findings demonstrate
that participants learned the reinforce-
ment contingencies and thus provide an
objective index of social learning.

The changes in likeability ratings and
response latencies did not appear to be
conscious behavioral choices. The major-
ity (93%) of participants were unable to
articulate the reinforcement patterns,

suggesting little if any explicit awareness of the reinforcement
contingencies. These findings demonstrate that social prefer-
ences and actions can be influenced after only brief encounters
with peers and without conscious awareness. Such rapid changes
highlight the influence of positive social interactions on effec-
tively altering subsequent behavior.

The neural correlates of these behavioral changes draw upon
the same neural circuitry as that implicated in reinforcement



about investors’ decisions (King-Casas et al., 2005; Phan et al.,
2010). Our results complement these studies by demonstrating a
neural mechanism for how prior positive interactions with others
shape our expectations for future interactions. Given the in-
creased sensitivity in the ventral striatum to appetitive stimuli
during adolescence (Galvan et al., 2006; Somerville et al., 2011),
as well as the greater influence of peers during adolescence
(Spear, 2000; Gardner and Steinberg, 2005), this work clearly
raises the question of how peer interaction differentially impacts
learning and behavior across development and how this may be
differentially represented in the brain. Accordingly, it would be
interesting to explore whether adolescents show increased sensi-
tivity during social learning relative to children and adults.

The expected values (Vt) to the cues corresponded with
greater activity in the rostral anterior cingulate cortex. Previous
studies have shown the rostral anterior cingulate cortex/medial
prefrontal cortex is sensitive to cues that predict reward receipt
(Tanaka et al., 2004; Knutson et al., 2005; Palminteri et al., 2009)
and may play a role in general learning about the value of infor-
mation and using this information for future decisions (Rush-
worth and Behrens, 2008). Lesion studies in nonhuman primates
have shown this region is important for establishing patterns of
social interest in other individual male or female macaques
(Rudebeck et al., 2006). Human imaging studies have shown this
region is sensitive when choosing to approach peers relative to
celebrities (Güroğlu et al., 2008) and when engaging in a series of
actions during live relative to recorded interactions (Redcay et al.,
2010). Given these studies examining social value in the anterior
cingulate cortex, and the extensive literature showing a general
sensitivity of this region in monitoring response conflict (Botvin-
ick et al., 1999, 2004), our findings suggest that learning social cue
values drives changes in behavior that may differ or conflict with
the cognitive demands of the situation (e.g., task demands). Over
the course of the experiment, this conflict may increase as
behavior is modulated in response to changing expected val-
ues. Although the current study did not find that the orbital
frontostriatal circuit was sensitive to expected values, the findings
in the anterior cingulate cortex may suggest a role for this region
in processing behavioral tendencies toward learned social cues.
These findings thus offer insight into the neural processing of
quick social decisions.

Conclusions
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